Part Number Hot Search : 
SC2738 128VLK 080CT ALS64 ATM10 12F60 IRFZ4 MOC205
Product Description
Full Text Search
 

To Download MGA-43128-BLKG Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  mga-43128 high linearity (700-800) mhz wireless data power amplifi er data sheet description avago technologies mga-43128 is a high-linearity power amplifi er for use in the (700-800) mhz band. high linear output power at 5v is achieved using avago technologies proprietary 0.25 ? m gaas enhancement- mode phemt process. it is housed in a miniature 5.0 x 5.0 x 0.85 mm 3 28-lead qfn package. it includes a shutdown and single-bit gain switch function. a detector is also included on-chip. the compact footprint coupled with high gain and high effi ciency makes the mga-43128 an ideal choice for umts 3gpp lte driver and fi nal stage amplifi er applications. component image 5.0 x 5.0 x 0.85 mm 3 28-lead qfn package (top view) notes: package marking provides orientation and identifi cation 43128 = device part number yyww = year and work week xxxx = a ssembly lot number features ?? high gain: 33.4 db ?? high power linear output: 29.1 dbm at 5 v supply (2.5% evm, lte 3gpp.ts 36.104, 10 mhz bandwidth ofdma) ?? built-in detector and shutdown switches ?? switchable gain: 18 db attenuation using one single cmos compatible switch pin ?? 3gpp spectral mask compliant at 29 dbm output power ?? gaas e-phemt technology [1] ?? low cost small package size: 5.0 x 5.0 x 0.85 mm 3 ?? msl-2a, lead-free and halogen free ?? useable at 3.3 v supply for lower supply voltage applications (27 dbm at 2.5% evm, lte 3gpp.ts 36.101, 10mhz bandwidth sc-fdma) specifi cations 750 mhz; vdd = vbias = 5.0 v, vc1 = 2.8 v, vc2 = 2.4 v, iqtotal = 370 ma (typ), lte 3gpp.ts 36.104, 10 mhz bandwidth ofdma ?? 33.4 db gain ?? 29.1 dbm linear pout (2.5% evm) ?? 36 dbm op1db ?? 22% pae @ linear pout ?? 3.3 v vdet @ linear pout ?? 18 db switchable gain attenuation (low gain mode) ?? 40 ? a shutdown current (vc = vbias = 0 v) applications ?? high linearity amplifi er for (700-800) mhz lte ap, cpe, and picocell ?? base station driver amplifi er note: 1. enhancement mode technology employs positive vgs, thereby eliminating the need of negative gate voltage associated with conventional depletion mode devices. attention: observe precautions for handling electrostatic sensitive devices. esd machine model = 50 v esd human body model = 500 v refer to avago application note a004r: electrostatic discharge, damage and control. 43128 yyww xxxx nc nc nc nc vbyp nc rfin nc vdd2/rfout vdd2/rfout vdd2/rfout nc vdd2/rfout vdd2/rfout m1 nc nc nc nc vdd1 nc nc vc1 vbias nc vdet vc2 nc gnd functional block diagram vdet bias rfin mmic vc1 vbyp vc2 vdd2/rfout bias m1 vdd1 match
2 mga-43128 absolute maximum rating [1] t a = 25 c symbol parameter units absolute maximum vdd, vbias supply voltages, bias supply voltage v 6.0 vc control voltage v (vdd) p in,max cw rf input power dbm 20 p diss total power dissipation [3] w 7.0 t j junction temperature c 150 t stg storage temperature c -65 to 150 thermal resistance thermal resistance [2] ? jc = 13.5c/w notes: 1. operation of this device in excess of any of these limits may cause permanent damage. 2. thermal resistance measured using infra- red measurement technique. 3. board temperature (t c ) is 25 c. for t c >55.5 c, derate the device power at 74.1 mw per c rise in board temperature adjacent to package bottom. electrical specifi cations t a = 25 c, vdd = vbias = 5.0 v, vc1 = 2.8 v, vc2 = 2.4 v, vbyp = 0 v, iqtotal = 370 ma, rf performance at 750 mhz, lte 3gpp. ts 36.104, 10 mhz bandwidth ofdma operation unless otherwise stated. symbol parameter and test condition units min. typ. max. vdd supply voltage 5.0 iqtotal quiescent supply current (normal high gain mode) ma 370 quiescent supply current (low gain mode, vbyp = 5.0 v) ma 370 gain gain db 31.5 33.4 op1db output power at 1 db gain compression dbm 36 pout_linear linear output power with 3gpp lte v8.6.0 (march 2009), 10 mhz bandwidth ofdma @ 2.5% evm dbm 27.6 29.1 itotal_linear total current draw at pout_linear level ma 780 1000 s11 input return loss, 50 ? source db -20 s22 output return loss, 50 ? load db -7 s12 reverse isolation db 50 2 fc second harmonic attenuation @ pin = -20 dbm dbc 60 atten gain attenuation in low gain mode (vbyp = 5.0 v) db 14.5 18 21.5 vdet detector output dc voltage @ 29 dbm linear pout v 3.3 detr detector rf dynamic range db 17 s stability under load vswr of 6:1 (all phase angle), spurious output dbc -60
3 product consistency distribution charts [1] figure 1. pout_linear; lsl = 27.6 dbm, nominal = 29.1 dbm figure 3. itotal_linear; nominal = 780 ma, usl = 1000 ma figure 4. atten; lsl = 14.5 db, nominal = 18 db, usl = 21.5 db; vbyp = 5 v figure 2. gain; lsl = 31.5 db, nominal = 33.4 db note: 1. distribution data sample size is 3500 samples taken from 3 diff erent wafer lots. t a = 25 c, vdd = vbias = 5.0 v, vc1 = 2.8 v, vc2 = 2.4 v, vbyp = 0 v, rf performance at 750 mhz unless otherwise stated. future wafers allocated to this product may have nominal values anywhere bet ween the upper and lower limits. 27 28 29 30 31 31 32 33 34 35 36 14 15 16 17 18 19 20 21 22 600 700 800 900 1000 lsl lsl usl lsl usl
4 mga-43128 typical performance t a = 25 c, vdd = vbias = 5.0 v, vc1 = 2.8 v, vc2 = 2.4 v, vbyp = 0 v, iqtotal = 370 ma, rf performance at 750 mhz, lte 3gpp. ts 36.104, 10 mhz bandwidth ofdma operation unless otherwise stated. fi gure 5. small-signal performance in high gain mode, vbyp = 0 v figure 6. small-signal performance in low gain mode, vbyp = 5. 0 v figure 7. over-temperature evm vs output power at 728 mhz figure 8. over-temperature idd_total vs output power at 728 mhz figure 9. over-temperature vdet vs output power at 728 mhz figure 10. over-temperature cw gain vs output power at 728 mhz fi gure 5. small-signal performance in high gain mode, vbyp = 0 v figure 6. small-signal performance in low gain mode, vbyp = 5. 0 v figure 7. over-temperature evm vs output power at 728 mhz figure 8. over-temperature idd_total vs output power at 728 mhz figure 9. over-temperature vdet vs output power at 728 mhz figure 10. over-temperature cw gain vs output power at 728 mhz s21 s22 s11 25 c -40 c 85 c 25 c -40 c 85 c 25 c -40 c 85 c 25 c -40 c 85 c 25 c -40 c 85 c 25 c -40 c 85 c 0 -30 -20 -10 10 20 30 40 600 650 700 750 800 850 900 950 1000 frequency (mhz) s21, s11, s22 (db) 0 5 -30 -25 -20 -15 -10 -5 10 15 20 600 650 700 750 800 850 900 950 1000 frequency (mhz) s21, s11, s22 (db) s21 s22 s11 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 10 12 14 16 18 20 22 24 26 28 30 pout (dbm) evm (%) 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 10 12 14 16 18 20 22 24 26 28 30 pout (dbm) itotal (a) 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 10 12 14 16 18 20 22 24 26 28 30 pout (dbm) vdet (v) 29 30 31 32 33 34 35 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 pout (dbm) gain (db)
5 figure 11. over-temperature evm vs output power at 750 mhz figure 12. over-temperature idd_total vs output power at 750 mhz figure 13. over-temperature vdet vs output power at 750 mhz figure 14. over-temperature cw gain vs output power at 750 mhz figure 15. over-temperature evm vs output power at 756 mhz figure 16. over-temperature idd_total vs output power at 756 mhz 25 c -40 c 85 c 25 c -40 c 85 c 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 10 12 14 16 18 20 22 24 26 28 30 pout (dbm) evm (%) 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 10 12 14 16 18 20 22 24 26 28 30 pout (dbm) itotal (a) 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 10 12 14 16 18 20 22 24 26 28 30 pout (dbm) vdet (v) 29 30 31 32 33 34 35 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 pout (dbm) gain (db) 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 10 12 14 16 18 20 22 24 26 28 30 pout (dbm) evm (%) 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 10 12 14 16 18 20 22 24 26 28 30 pout (dbm) itotal (a) 25 c -40 c 85 c 25 c -40 c 85 c 25 c -40 c 85 c 25 c -40 c 85 c
6 figure 17. over-temperature vdet vs output power at 756 mhz figure 18. over-temperature cw gain vs output power at 756 mhz 25 c -40 c 85 c 25 c -40 c 85 c 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 10 12 14 16 18 20 22 24 26 28 30 pout (dbm) vdet (v) 29 30 31 32 33 34 35 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 pout (dbm) gain (db)
7 figure 23. 3gpp e-utra bands < 1 ghz category b spectrum emission mask at pout 29 dbm at 756 mhz figure 24. 3gpp e-utra bands 12,13 additional spectrum emission mask at pout 29 dbm at 756 mhz figure 19. 3gpp e-utra bands < 1 ghz category b spectrum emission mask at pout 29 dbm at 728 mhz figure 20. 3gpp e-utra bands 12,13 additional spectrum emission mask at pout 29 dbm at 728 mhz figure 21. 3gpp e-utra bands < 1 ghz category b spectrum emission mask at pout 29 dbm at 750 mhz figure 22. 3gpp e-utra bands 12,13 additional spectrum emission mask at pout 29d bm at 750 mhz
8 mga-43128 typical performance t a = 25 c, vdd = vbias = 3.3 v, vc1 = 2.8 v, vc2 = 2.3 v, vbyp = 0 v, iqtotal = 260 ma, rf performance at 750 mhz, lte 3gpp. ts 36.101, 10 mhz bandwidth sc-fdma operation unless otherwise stated. figure 25. small-signal performance in high gain mode, vbyp = 0 v figure 26. small-signal performance in low gain mode, vbyp = 3 .3 v figure 27. over-temperature evm vs output power at 698 mhz figure 28. over-temperature idd_total vs output power at 698 mhz figure 29. over-temperature vdet vs output power at 698 mhz figure 30. over-temperature cw gain vs output power at 698 mhz 25 c -40 c 85 c 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 10 12 14 16 18 20 22 24 26 28 30 pout (dbm) evm (%) 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 10 12 14 16 18 20 22 24 26 28 30 pout (dbm) itotal (a) 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 10 12 14 16 18 20 22 24 26 28 30 pout (dbm) vdet (v) 25 26 27 28 29 30 31 32 33 8 1012141618202224262830323436 pout (dbm) gain (db) 25 c -40 c 85 c 25 c -40 c 85 c 25 c -40 c 85 c -30 -20 -10 0 10 20 30 40 600 650 700 750 800 850 900 950 1000 frequency (mhz) s21, s11, s22 (db) s21 s22 s11 25 c -40 c 85 c -30 -20 -10 0 10 20 30 600 650 700 750 800 850 900 950 1000 frequency (mhz) s21, s11, s22 (db) s21 s22 s11 25 c -40 c 85 c
9 figure 31. over-temperature evm vs output power at 706 mhz figure 32. over-temperature idd_total vs output power at 706 mhz figure 33. over-temperature vdet vs output power at 706 mhz figure 34. over-temperature cw gain vs output power at 706 mhz figure 35. over-temperature evm vs output power at 716 mhz figure 36. over-temperature idd_total vs output power at 716 mhz 25 c -40 c 85 c 25 c -40 c 85 c 25 c -40 c 85 c 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 10 12 14 16 18 20 22 24 26 28 30 pout (dbm) evm (%) 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 10 12 14 16 18 20 22 24 26 28 30 pout (dbm) itotal (a) 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 10 12 14 16 18 20 22 24 26 28 30 pout (dbm) vdet (v) 25 26 27 28 29 30 31 32 33 8 1012141618202224262830323436 pout (dbm) gain (db) 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 10 12 14 16 18 20 22 24 26 28 30 pout (dbm) evm (%) 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 10 12 14 16 18 20 22 24 26 28 30 pout (dbm) itotal (a) 25 c -40 c 85 c 25 c -40 c 85 c 25 c -40 c 85 c
10 figure 37. over-temperature vdet vs output power at 716 mhz figure 38. over-temperature cw gain vs output power at 716 mhz figure 39. over-temperature evm vs output power at 777 mhz figure 40. over-temperature idd_total vs output power at 777 mhz figure 41. over-temperature vdet vs output power at 777 mhz figure 42. over-temperature cw gain vs output power at 777 mhz 25 c -40 c 85 c 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 10 12 14 16 18 20 22 24 26 28 30 pout (dbm) vdet (v) 25 26 27 28 29 30 31 32 33 8 1012141618202224262830323436 pout (dbm) gain (db) 25 c -40 c 85 c 25 c -40 c 85 c 25 c -40 c 85 c 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 10 12 14 16 18 20 22 24 26 28 30 pout (dbm) evm (%) 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 10 12 14 16 18 20 22 24 26 28 30 pout (dbm) itotal (a) 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 10 12 14 16 18 20 22 24 26 28 30 pout (dbm) vdet (v) 27 28 29 30 31 32 33 34 35 8 1012141618202224262830323436 pout (dbm) gain (db) 25 c -40 c 85 c 25 c -40 c 85 c
11 figure 43. over-temperature evm vs output power at 782 mhz figure 44. over-temperature idd_total vs output power at 782 mhz figure 45. over-temperature vdet vs output power at 782 mhz figure 46. over-temperature cw gain vs output power at 782 mhz figure 47. over-temperature evm vs output power at 787 mhz figure 48. over-temperature idd_total vs output power at 787 mhz 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 10 12 14 16 18 20 22 24 26 28 30 pout (dbm) itotal (a) 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 10 12 14 16 18 20 22 24 26 28 30 pout (dbm) evm (%) 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 10 12 14 16 18 20 22 24 26 28 30 pout (dbm) vdet (v) 27 28 29 30 31 32 33 34 35 8 1012141618202224262830323436 pout (dbm) gain (db) 25 c -40 c 85 c 25 c -40 c 85 c 25 c -40 c 85 c 25 c -40 c 85 c 25 c -40 c 85 c 25 c -40 c 85 c 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 10 12 14 16 18 20 22 24 26 28 30 pout (dbm) itotal (a) 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 10 12 14 16 18 20 22 24 26 28 30 pout (dbm) evm (%)
12 figure 49. over-temperature vdet vs output power at 787 mhz figure 50. over-temperature cw gain vs output power at 787 mhz 25 c -40 c 85 c 25 c -40 c 85 c 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 10 12 14 16 18 20 22 24 26 28 30 pout (dbm) vdet (v) 27 28 29 30 31 32 33 34 35 8 1012141618202224262830323436 pout (dbm) gain (db)
13 s-parameter [1] (vdd = vbias = 5.0 v, vc1 = 2.8 v, vc2 = 2.4 v, vbyp = 0 v, t = 25 c, unmatched) freq (ghz) s11 (db) s11 (ang) s21 (db) s21 (ang) s12 (db) s12 (ang) s22 (db) s22 (ang) 0.1 -8.14 -35.30 -47.42 -5.87 -48.92 -159.35 -1.46 178.41 0.2 -7.31 -68.56 -21.87 -8.50 -57.70 159.14 -1.06 -178.87 0.3 -6.48 -101.78 -3.17 -38.71 -62.88 92.49 -0.95 -178.86 0.4 -6.23 -135.74 13.29 -90.66 -61.50 -97.85 -0.92 -178.64 0.5 -7.87 -164.40 22.16 145.80 -57.88 -134.74 -0.84 -177.81 0.6 -9.90 169.63 21.00 146.66 -64.82 35.29 -0.64 -177.41 0.7 -16.37 176.11 27.51 47.33 -73.33 173.44 -0.40 -177.66 0.8 -15.41 -167.69 23.81 -12.00 -57.62 76.49 -0.23 -179.17 0.9 -14.69 -165.45 20.13 -47.59 -55.52 115.43 -0.17 179.41 1.0 -14.47 -163.62 16.68 -73.16 -59.22 151.66 -0.20 178.20 1.1 -14.13 -163.59 12.81 -93.36 -58.34 148.52 -0.25 177.17 1.2 -13.29 -165.43 6.30 -108.21 -56.59 103.00 -0.30 176.30 1.3 -12.72 -167.44 0.22 8.83 -60.14 97.90 -0.38 175.36 1.4 -11.92 -163.10 15.79 -10.94 -54.96 75.33 -0.54 175.12 1.5 -9.13 -167.99 19.49 -73.15 -58.94 78.81 -0.51 175.98 1.6 -8.25 179.58 17.26 -110.82 -56.48 95.50 -0.39 175.21 1.7 -7.85 171.31 15.02 -130.45 -54.63 85.66 -0.37 174.38 1.8 -7.44 164.79 13.28 -143.72 -53.43 82.54 -0.39 173.65 1.9 -7.08 158.53 11.87 -154.39 -52.98 83.05 -0.39 172.90 2.0 -6.72 152.63 10.67 -163.70 -52.29 68.13 -0.40 172.11 2.1 -6.41 147.12 9.62 -171.91 -53.43 71.77 -0.43 171.39 2.2 -6.10 141.88 8.73 -179.59 -53.67 68.02 -0.44 170.56 2.3 -5.81 136.60 7.91 172.46 -54.00 47.31 -0.48 169.79 2.4 -5.53 131.41 7.07 165.18 -53.82 65.89 -0.50 168.98 2.5 -5.29 126.26 6.31 158.22 -50.94 62.14 -0.54 168.15 2.6 -5.07 121.15 5.56 151.91 -52.94 47.01 -0.56 167.33 2.7 -4.86 116.41 4.91 145.58 -48.67 55.89 -0.59 166.44 2.8 -4.66 111.48 4.31 139.45 -54.58 30.83 -0.61 165.42 2.9 -4.46 106.95 3.74 133.41 -51.97 60.93 -0.64 164.35 3.0 -4.29 102.32 3.21 127.41 -51.76 67.83 -0.68 163.37 4.0 -2.85 63.15 0.67 58.70 -47.20 29.01 -2.05 148.16 5.0 -2.66 37.90 -12.25 61.62 -57.05 5.98 -0.22 151.26 6.0 -2.18 25.64 -12.37 10.32 -53.33 -7.48 -0.31 142.65 7.0 -2.43 13.04 -14.10 -23.35 -51.61 0.87 -0.42 136.62 8.0 -3.11 -5.76 -13.87 -62.74 -54.07 -28.02 -0.72 127.31 9.0 -3.46 -30.56 -12.75 -115.55 -48.58 -66.78 -1.71 108.78 10.0 -3.07 -46.00 -14.51 113.24 -47.29 -115.44 -6.23 -163.51 11.0 -2.37 -48.16 -34.00 118.81 -59.20 -178.76 -0.39 129.62 12.0 -2.08 -42.93 -30.43 146.98 -56.82 -92.88 -0.37 109.25 13.0 -2.16 -44.72 -32.94 119.69 -55.06 -90.14 -0.37 95.58 14.0 -2.37 -64.86 -33.75 82.63 -51.20 -122.91 -0.46 88.61 15.0 -1.95 -97.74 -35.00 51.90 -48.40 -142.84 -0.76 79.95 16.0 -1.27 -118.51 -38.27 25.62 -47.03 153.45 -0.99 66.53 17.0 -0.89 -120.81 -38.52 -9.94 -47.28 98.28 -1.24 46.63 18.0 -1.12 -120.66 -37.86 1.87 -39.61 43.37 -1.35 22.60 19.0 -5.11 -116.49 -25.04 -75.18 -25.00 -83.39 -2.96 -2.34 20.0 -2.01 -160.45 -33.31 -169.08 -39.70 166.98 -2.89 3.06 note: 1. s-parameter is measured with deembedded reference plane at dut rfin and rfout pins.
14 s-parameter [1] (vdd = vbias = 5.0 v, vc1 = 2.8 v, vc2 = 2.4 v, vbyp = 5 v, t = 25 c, unmatched) freq (ghz) s11 (db) s11 (ang) s21 (db) s21 (ang) s12 (db) s12 (ang) s22 (db) s22 (ang) 0.1 -11.94 -8.51 -49.44 -39.74 -46.82 -30.34 -1.47 178.53 0.2 -12.35 -10.89 -37.99 -48.26 -60.54 -46.49 -1.06 -179.02 0.3 -12.74 -12.94 -21.71 -76.41 -54.89 -93.53 -0.95 -178.99 0.4 -13.11 -15.88 -7.11 -117.76 -61.47 22.46 -0.91 -178.85 0.5 -13.04 -18.39 1.50 130.99 -58.14 118.66 -0.86 -178.16 0.6 -13.01 -21.76 0.66 140.87 -68.59 32.18 -0.68 -177.78 0.7 -12.96 -25.86 8.77 41.10 -59.23 -85.20 -0.34 -177.11 0.8 -13.03 -30.11 5.00 -22.83 -57.64 -11.42 -0.12 -179.71 0.9 -13.22 -33.69 1.12 -60.52 -58.18 -26.30 -0.14 178.56 1.0 -12.98 -35.55 -2.63 -87.89 -61.48 155.13 -0.21 177.44 1.1 -12.81 -36.88 -6.88 -109.63 -56.94 81.57 -0.27 176.56 1.2 -13.00 -41.20 -13.82 -125.89 -60.36 21.70 -0.32 175.84 1.3 -13.34 -44.60 -20.25 -7.88 -61.07 -47.01 -0.37 174.94 1.4 -13.47 -48.70 -5.07 -31.29 -63.26 66.70 -0.53 174.32 1.5 -13.78 -53.01 -2.56 -95.16 -58.12 83.32 -0.57 175.09 1.6 -14.09 -56.27 -5.61 -129.67 -61.56 85.29 -0.46 174.67 1.7 -14.43 -60.47 -8.43 -146.48 -58.06 69.87 -0.43 173.91 1.8 -14.80 -64.85 -10.75 -157.23 -56.29 72.32 -0.43 173.20 1.9 -15.20 -69.11 -12.70 -165.08 -54.07 83.09 -0.42 172.45 2.0 -15.58 -72.87 -14.45 -171.21 -54.82 59.94 -0.44 171.64 2.1 -16.05 -77.36 -16.04 -176.03 -58.27 -12.33 -0.46 170.85 2.2 -16.39 -82.04 -17.44 -179.38 -58.14 85.19 -0.45 169.94 2.3 -16.87 -87.57 -18.59 177.72 -55.54 82.02 -0.49 169.12 2.4 -17.60 -92.35 -19.76 174.76 -52.01 60.55 -0.52 168.19 2.5 -18.03 -97.93 -20.89 172.55 -55.89 78.49 -0.54 167.42 2.6 -18.66 -104.26 -21.90 172.64 -57.11 52.76 -0.55 166.47 2.7 -19.33 -111.07 -22.61 171.67 -60.99 88.76 -0.57 165.51 2.8 -20.10 -118.74 -23.19 171.49 -56.86 97.22 -0.59 164.50 2.9 -20.79 -127.09 -23.74 171.01 -51.97 50.77 -0.64 163.39 3.0 -21.60 -136.55 -23.91 171.42 -52.61 61.08 -0.66 162.30 4.0 -16.34 110.44 -21.81 135.34 -49.16 40.50 -2.01 146.68 5.0 -8.79 76.28 -30.55 139.37 -54.37 37.68 -0.21 149.36 6.0 -5.35 58.70 -28.50 88.40 -54.30 9.34 -0.30 140.53 7.0 -3.73 44.52 -28.57 55.97 -50.77 -3.75 -0.43 133.88 8.0 -3.12 25.09 -27.26 20.45 -48.29 -20.92 -0.71 124.43 9.0 -2.49 -5.31 -24.75 -29.37 -48.65 -51.40 -1.73 105.44 10.0 -1.57 -31.23 -25.49 -154.19 -49.37 -144.33 -6.23 -167.65 11.0 -0.95 -41.37 -44.37 -153.26 -65.45 -164.94 -0.38 126.17 12.0 -0.71 -41.57 -37.93 -106.47 -55.36 -68.46 -0.38 105.04 13.0 -0.86 -45.72 -38.33 -122.24 -55.73 -69.82 -0.38 91.24 14.0 -1.22 -67.34 -36.30 -157.35 -49.66 -114.15 -0.49 82.28 15.0 -1.17 -100.69 -34.91 166.11 -46.90 -148.27 -0.73 73.98 16.0 -0.75 -121.46 -35.16 120.62 -46.79 169.61 -1.02 61.39 17.0 -0.59 -124.51 -35.92 74.33 -47.10 96.83 -1.23 40.92 18.0 -1.02 -124.91 -32.86 26.56 -38.05 44.39 -1.38 16.87 19.0 -4.80 -118.77 -26.49 -94.70 -24.57 -91.02 -3.02 -10.14 20.0 -1.78 -163.50 -39.35 -127.38 -42.71 161.68 -2.86 -4.30 note: 1. s-parameter is measured with deembedded reference plane at dut rfin and rfout pins.
15 s-parameter [1] (vdd = vbias = 3.3 v, vc1 = 2.8 v, vc2 = 2.3 v, vbyp = 0 v, t = 25 c, unmatched) freq (ghz) s11 (db) s11 (ang) s21 (db) s21 (ang) s12 (db) s12 (ang) s22 (db) s22 (ang) 0.1 -8.10 -35.22 -49.86 10.41 -51.11 61.42 -1.62 178.92 0.2 -7.31 -71.21 -17.88 -23.89 -56.56 149.66 -1.11 -177.87 0.3 -6.78 -109.64 -10.40 -110.63 -60.56 -104.69 -0.97 -177.55 0.4 -7.63 -151.19 1.22 -105.42 -64.66 67.21 -0.86 -176.91 0.5 -11.35 172.34 11.72 -151.11 -67.75 -25.09 -0.66 -176.08 0.6 -19.50 143.94 19.33 155.29 -62.07 130.09 -0.44 -176.21 0.7 -25.10 -74.38 23.36 94.52 -61.18 119.08 -0.25 -177.64 0.8 -14.47 -97.42 24.58 37.28 -59.15 -146.47 -0.26 -178.64 0.9 -11.56 -118.80 23.66 -11.00 -55.81 142.75 -0.23 -179.25 1.0 -10.52 -132.64 21.84 -48.10 -60.95 127.12 -0.18 179.91 1.1 -9.99 -141.31 20.03 -77.22 -59.10 123.90 -0.20 178.74 1.2 -9.30 -148.70 18.56 -103.23 -55.05 91.34 -0.31 177.68 1.3 -8.29 -156.47 17.59 -134.98 -59.13 75.75 -0.54 177.52 1.4 -7.61 -172.69 13.86 164.83 -60.46 28.97 -0.42 -179.29 1.5 -8.90 -179.34 -7.93 168.08 -60.25 139.43 0.00 177.98 1.6 -8.73 -179.96 -0.25 -124.11 -61.17 105.03 0.00 175.40 1.7 -8.01 178.25 -3.88 -105.38 -60.79 -15.56 -0.01 173.62 1.8 -6.52 166.88 8.44 -94.65 -54.41 102.86 -0.05 172.61 1.9 -7.02 159.51 6.45 -135.30 -55.63 101.46 -0.06 171.26 2.0 -6.68 152.38 7.26 -147.75 -54.53 83.73 -0.08 170.15 2.1 -6.43 147.14 6.07 -161.29 -50.50 92.59 -0.10 168.92 2.2 -6.16 141.61 5.15 -171.32 -65.26 75.70 -0.13 167.76 2.3 -5.82 136.31 4.33 179.36 -56.38 66.63 -0.14 166.47 2.4 -5.49 130.72 3.42 171.17 -58.04 50.34 -0.18 165.39 2.5 -5.14 125.51 2.64 163.71 -53.04 41.86 -0.19 164.28 2.6 -4.85 120.60 1.85 156.44 -54.07 76.60 -0.21 163.17 2.7 -4.53 115.85 1.09 149.48 -51.83 29.01 -0.19 162.13 2.8 -4.23 111.16 0.31 142.77 -50.32 49.31 -0.22 161.04 2.9 -3.96 106.92 -0.49 136.09 -55.49 20.49 -0.22 160.14 3.0 -3.66 102.78 -1.28 129.68 -51.50 36.03 -0.22 159.20 4.0 -3.32 72.10 -5.09 98.48 -52.66 21.72 -0.29 152.94 5.0 -2.38 48.11 -8.71 49.09 -50.87 13.93 -0.43 147.02 6.0 -2.35 14.04 -12.90 8.60 -52.41 -16.78 -0.29 145.06 7.0 -2.20 -5.81 -14.80 -30.00 -61.31 -8.69 -0.40 137.51 8.0 -2.51 -5.36 -16.01 -64.48 -54.15 -25.53 -0.49 125.29 9.0 -3.10 -3.46 -17.02 -101.85 -53.55 -25.19 -0.84 111.54 10.0 -3.36 -13.89 -18.41 -146.10 -52.82 -33.16 -1.27 100.70 11.0 -2.84 -34.58 -18.40 120.80 -43.41 -138.21 -8.78 168.54 12.0 -2.34 -52.71 -36.50 116.27 -58.92 -28.25 -0.41 116.94 13.0 -1.95 -58.77 -34.01 114.77 -56.13 -90.22 -0.42 98.03 14.0 -1.91 -60.09 -34.79 85.44 -52.85 -109.75 -0.49 83.45 15.0 -2.00 -72.30 -36.21 64.04 -47.41 -140.10 -0.68 71.15 16.0 -1.58 -92.88 -37.26 39.87 -45.73 159.61 -0.91 57.61 17.0 -1.17 -103.62 -38.07 1.30 -49.75 89.61 -1.00 43.27 18.0 -1.54 -111.59 -37.82 -10.03 -43.50 30.12 -1.22 27.85 19.0 -2.07 -122.05 -37.17 -46.22 -44.61 -36.27 -1.43 7.62 20.0 -1.89 -150.97 -37.71 -79.99 -46.79 -16.71 -1.76 -14.92 note: 1. s-parameter is measured with deembedded reference plane at dut rfin and rfout pins.
16 s-parameter [1] (vdd = vbias = 3.3 v, vc1 = 2.8 v, vc2 = 2.3 v, vbyp = 3.3 v, t = 25 c, unmatched) freq (ghz) s11 (db) s11 (ang) s21 (db) s21 (ang) s12 (db) s12 (ang) s22 (db) s22 (ang) 0.1 -11.92 -6.46 -48.55 109.17 -54.25 53.49 -1.62 178.99 0.2 -12.39 -9.93 -33.65 -61.73 -55.57 140.56 -1.11 -177.83 0.3 -12.70 -11.65 -29.38 -145.07 -63.61 -73.29 -0.97 -177.48 0.4 -12.88 -14.50 -19.24 -123.81 -64.16 106.19 -0.85 -176.88 0.5 -12.82 -18.10 -8.02 -155.28 -61.93 179.01 -0.67 -176.15 0.6 -12.73 -21.02 1.36 155.44 -61.51 73.37 -0.48 -176.12 0.7 -12.59 -24.79 7.00 86.54 -60.27 74.41 -0.25 -177.05 0.8 -12.49 -29.28 7.75 15.52 -68.26 95.86 -0.15 -178.43 0.9 -12.65 -33.77 5.34 -36.90 -63.17 83.17 -0.16 -179.71 1.0 -12.59 -37.67 2.52 -73.44 -62.05 154.42 -0.20 179.29 1.1 -12.53 -42.10 0.01 -101.94 -57.98 30.33 -0.28 178.40 1.2 -12.71 -44.46 -2.09 -127.62 -63.04 169.78 -0.40 177.75 1.3 -12.85 -47.12 -3.84 -159.13 -61.24 44.82 -0.60 178.02 1.4 -13.01 -49.50 -8.51 144.69 -61.65 105.13 -0.38 -179.09 1.5 -13.15 -51.47 -30.57 151.02 -66.71 -127.89 0.00 178.02 1.6 -13.30 -54.44 -23.03 -141.05 -58.24 147.73 -0.01 175.46 1.7 -13.56 -56.71 -27.29 -120.74 -60.88 40.45 0.00 173.70 1.8 -13.87 -59.16 -16.15 -108.68 -56.87 29.32 -0.08 172.61 1.9 -14.20 -61.42 -18.93 -141.58 -57.25 99.98 -0.09 171.33 2.0 -14.61 -63.74 -18.08 -151.82 -60.59 74.54 -0.10 170.34 2.1 -15.13 -66.62 -19.69 -161.50 -55.17 134.56 -0.12 169.12 2.2 -15.65 -69.01 -21.04 -166.95 -60.74 27.34 -0.14 168.01 2.3 -16.31 -71.39 -22.04 -171.37 -59.26 71.07 -0.15 166.73 2.4 -17.16 -74.88 -23.34 -175.26 -54.76 63.63 -0.19 165.73 2.5 -18.11 -78.85 -24.28 -177.10 -56.27 83.31 -0.18 164.46 2.6 -19.28 -83.33 -24.97 -179.16 -54.42 121.59 -0.21 163.45 2.7 -20.47 -89.02 -25.87 -179.99 -57.21 105.17 -0.20 162.42 2.8 -22.05 -97.07 -26.41 179.07 -56.51 125.30 -0.22 161.28 2.9 -23.72 -109.43 -26.84 177.02 -55.13 70.86 -0.22 160.42 3.0 -25.06 -125.78 -27.28 175.94 -53.89 77.12 -0.21 159.49 4.0 -14.39 118.54 -28.14 175.83 -54.61 17.00 -0.29 153.21 5.0 -8.55 86.21 -27.12 130.33 -49.19 41.82 -0.42 147.31 6.0 -6.36 51.08 -28.82 89.39 -53.58 7.20 -0.29 145.41 7.0 -4.12 27.47 -28.73 51.54 -50.12 -3.00 -0.40 137.89 8.0 -2.71 24.22 -29.17 19.43 -51.47 -15.05 -0.50 125.81 9.0 -2.04 21.52 -29.17 -13.12 -48.10 -20.78 -0.84 112.13 10.0 -1.65 3.43 -29.59 -50.40 -47.51 -34.48 -1.26 101.34 11.0 -1.28 -24.96 -27.95 -138.22 -43.70 -119.57 -8.84 169.49 12.0 -0.94 -48.04 -45.36 -129.93 -66.05 -56.32 -0.40 117.68 13.0 -0.76 -57.21 -40.10 -130.14 -56.32 -124.01 -0.41 98.85 14.0 -0.85 -60.04 -37.42 -153.83 -50.73 -114.23 -0.49 84.34 15.0 -1.08 -72.84 -36.35 176.73 -47.97 -140.11 -0.68 72.11 16.0 -0.98 -92.97 -34.97 135.19 -43.88 173.82 -0.91 58.62 17.0 -0.84 -104.26 -36.08 85.82 -48.23 109.86 -1.00 44.15 18.0 -1.45 -111.75 -35.77 26.98 -42.81 32.34 -1.20 28.90 19.0 -1.88 -121.89 -37.46 -7.29 -44.81 -20.78 -1.45 9.00 20.0 -1.66 -151.08 -40.00 -8.99 -48.49 -9.16 -1.75 -13.86 note: 1. s-parameter is measured with deembedded reference plane at dut rfin and rfout pins.
17 demonstration board top view (5 v bom with ofdma modulation) figure 51. demonstration board application circuit for mga-43128 top view (5 v ofdma bom) bill of materials component label value part number (vendor) c1, c5, c6, c8, c9, c10, c11, c12, c13 82 pf grm1555c1h820jz01 (murata) c4, c7 8.2 pf gjm1555c1h8r2db01 (murata) c3 6.8 pf gjm1555c1h6r8db01 (murata) c2 5.6 pf gjm1555c1h5r6db01 (murata) c14 0.1 ? f grm155r61a104ka01 (murata) c15 4.7 ? f grm21br60j475ka11 (murata) c16 1 nf grm155r71h102ka01 (murata) l1 2.4 nh 0402hp-2n4xjl (coilcraft) l2 1.9 nh 0402cs-1n9xjl (coilcraft) l3 1.0 nh 0402hp-1n0xjl (coilcraft) l4 5.6 nh 0805hq-5n6xjl (coilcraft) vdd1 +5 v vdd2 +5 v mga-43128 vbyp 0 v (normal gain) +5 v (low gain) vc2 +2.4 v vc1 +2.8 v vbias +5 v vdet (output) vdd1_b1 vdd2_b1 vbyp vc1 vc2 vbias vdd1 vdd_s vdd2 vdd2_s vdet r1 input output avago technologies 700-800 mhz pa r04350 dk 3.48 h 10 mil w 0.508 mm g 0.50 mm c14 c18 c9 c15 c6 c4 c5 c3 c2 c8 c7 l4 l1 l2 c1 l3 r2 r3 c17 c13 c12 c16 c11 c10
18 demonstration board top view (3.3 v bom with sc-fdma modulation) figure 52. demonstration board application circuit for mga-43128 top view (3.3 v sc-fdma bom) bill of materials component label value part number (vendor) c1, c5, c8, c9, c10, c11, c12, c13 82 pf grm1555c1h820jz01 (murata) c2 7.5pf gjm1555c1h7r5db01 (murata) c3 6.2 pf gjm1555c1h6r2db01 (murata) c4 8.2 pf gjm1555c1h8r2db01 (murata) c7 5.6 pf gjm1555c1h5r6db01 (murata) c14 0.1 ? f grm155r61a104ka01 (murata) c15 4.7 ? f grm21br60j475ka11 (murata) c16 1 nf grm155r71h102ka01 (murata) c17 12 pf gjm1555c1h120jb01 (murata) c18 220 pf grm1555c1h221ja01 (murata) l1 6.8 nh 0402hp-6n8xjl (coilcraft) l2 1.9 nh 0402cs-1n9xjl (coilcraft) l4 5.6 nh 0805hq-5n6xjl (coilcraft) r2 0 ohm rk73z1ettp (koa) vdd1 +3.3 v vdd2 +3.3 v vdd1 vdd_s vdd2 vdd2_s vbyp 0 v (normal gain) +3.3 v (low gain) vc2 +2.3 v vc1 +2.8 v vbias +3.3 v vdet (output) vdd1_b1 vdd2_b1 vbyp vc1 vc2 vbias vdet r1 input output avago technologies 700-800 mhz pa r04350 dk 3.48 h 10 mil w 0.508 mm g 0.50 mm c14 c18 c9 c15 c6 c4 c5 c3 c2 c8 c7 l4 l1 l2 c1 l3 r2 r3 c17 c13 c12 c16 c11 c10 mga-43128
19 application schematic (5 v bias with ofdma modulation) figure 53. application schematic in demonstration board (5 v ofdma bom) notes: 1. in normal gain mode operation, vbyp = 0 v. vc1, vc2 are bias pins that are used to set the bias conditions to the 2 internal gain stages of the pa. 2. typical quiescent current distribution with vdd1 = vdd2 = 5 v, vbyp = 0 v, vc1 = 2.8 v, vc2 = 2.4 v is: a. idd1 = 45 ma b. idd2 = 325 ma c. i_bias = 13 ma 3. low-gain mode is enabled by setting vbyp pin to 5 v. this reduces gain of the amplifi er by 18 db. 4. modulated signal measurements are made with agilent n9020a mx a signal analyzer and agilent esg4438c signal generator with n7 624b option using the following test conditions: C signal format: lte 3gpp.ts 36.104, ofdma C modulation bandwidth: 10 mhz residual distortion of signal generator: (0.6-0.8)%. this distortion is included in the overall evm data in the datasheet. 5. typical operating voltages and currents: d. normal gain mode: vdd1 = vdd2 = vbias = 5 v. vbyp = 0 v. iq(total) = 370 ma. e. bypass mode: vdd2 = vdd2 = vbias = 5 v. vbyp = 5 v. iq(total) = 370 ma. 6. vdd1/2 are shown as separate supplies with individual bypass capacitors. this yields the most stable confi guration. if a common power supply line is used, proper broadband bypass decoupling is recommended to reduce common mode feedback through the supply line. nc vdd2/rfout vdd2/rfout vdd2/rfout vdd2/rfout vdd2/rfout nc nc nc nc rfin nc nc vbyp m1 nc vdd1 nc nc nc nc nc vc1 vc2 nc vbias nc vdet 1 2 3 4 5 6 7 21 20 19 18 17 16 15 8 9 10 11 12 13 14 28 27 26 25 24 23 22 82 pf rfin vc2 82 pf vbias vdet vc1 vbyp 1 nf 82 pf 82 pf 82 pf 82 pf 1.9 nh 5.6 pf 82 pf rfout 6.8 pf 8.2 pf 8.2 pf 5.6 nh 2.4 nh 0.1 p f 82 pf 4.7 p f 82 pf vdd2 vdd1 1.0 nh mga-43128
20 application schematic (3.3 v bias with sc-fdma modulation) figure 54. application schematic in demonstration board (3.3 v sc-fdma bom) notes: 1. in normal gain mode operation, vbyp = 0 v. vc1, vc2 are bias pins that are used to set the bias conditions to the 2 internal gain stages of the pa. 2. typical quiescent current distribution with vdd1 = vdd2 = 3.3 v, vbyp = 0 v, vc1 = 2.8 v, vc2 = 2.3 v is: a. idd1 = 32 ma b. idd2 = 218 ma c. i_bias = 12 ma 3. low-gain mode is enabled by setting vbyp pin to 3.3 v. this reduces gain of the amplifi er by 16.5 db. 4. modulated signal measurements are made with agilent n9020a mx a signal analyzer and agilent esg4438c signal generator with n7 624b option using the following test conditions: C signal format: lte 3gpp.ts 36.101, sc-fdma C modulation bandwidth: 10 mhz residual distortion of signal generator: (0.6-0.8)%. this distortion is included in the overall evm data in the datasheet. 5. typical operating voltages and currents: d. normal gain mode: vdd1 = vdd2 = vbias = 3.3 v. vbyp = 0 v. iq(total) = 260 ma. e. bypass mode: vdd2 = vdd2 = vbias = 3.3 v. vbyp = 3.3 v. iq(total) = 260 ma. 6. vdd1/2 are shown as separate supplies with individual bypass capacitors. this yields the most stable confi guration. if a common power supply line is used, proper broadband bypass decoupling is recommended to reduce common mode feedback through the supply line. nc vdd2/rfout vdd2/rfout vdd2/rfout vdd2/rfout vdd2/rfout nc nc nc nc rfin nc nc vbyp m1 nc vdd1 nc nc nc nc nc vc1 vc2 nc vbias nc vdet 1 2 3 4 5 6 7 21 20 19 18 17 16 15 8 9 10 11 12 13 14 28 27 26 25 24 23 22 82 pf rfin vc2 82 pf vbias vdet vc1 vbyp 1 nf 82 pf 82 pf 82 pf 82 pf 1.9 nh 7.5 pf 82 pf rfout 6.2 pf 8.2 pf 5.6 pf 12 pf 5.6 nh 6.8 nh 0.1 p f 220 pf 4.7 p f 82 pf vdd2 vdd1 0 ohm mga-43128
21 pcb land patterns and stencil design 0.250 0.250 0.518 3.250 0.360 3.250 stencil outline combined pcb land pattern and stencil outline 0.250 0.250 0.300 3.600 0.400 ? 0.400 c'fer 0.300 x 45 3.600 pcb land pattern (top view) 0.250 0.250 0.300 3.600 0.400 3.600 solder mask solder mask opening solder mask outline (all dimensions in mm)
22 qfn 5.0 x 5.0 x 0.85 mm 3 28-lead package dimensions part number ordering information part number qty container MGA-43128-BLKG 100 antistatic bag mga-43128-tr1g 1000 7 reel 5.00 0.05 5.00 0.05 pin 1 top view 43128 yyww xxxx 0.000 C0.05 0.203 ref. 0.85 0.05 side view pin 1 identification chamfer 0.40 x 45 0.40 0.05 3.00 ref. 0.50 bsc 3.60 0.05 exp.dap 3.60 0.05 exp.dap bottom view 0.25 0.05 notes: 1. all dimensions are in milimeters 2. dimensions are inclusive of plating 3. dimensions are exclusive of mold fl ash and metal burr.
23 device orientation tape dimensions user feed direction top view end view user feed direction cover tape carrier tape reel 43128 yyww xxxx 43128 yyww xxxx 43128 yyww xxxx dimension list annote milimeter annote milimeter a0 5.40 0.10 p0 4.00 0.10 b0 5.40 0.10 p2 2.00 0.10 d0 1.50 +0.10 C0 p10 40.00 0.20 d1 1.60 0.10 e 1.75 0.10 k0 1.90 0.10 f 5.50 0.10 k1 1.50 0.10 t 0.30 0.03 p1 8.00 0.10 w 12.00 0.30
for product information and a complete list of distributors, please go to our web site: www.avagotech.com avago, avago technologies, and the a logo are trademarks of avago technologies in the united states and other countries. data subject to change. copyright ? 2005-2012 avago technologies. all rights reserved. av02-3246en - february 29, 2012 reel dimensions (7 inch reel) ?178.01.0 ?55.00.5 see detail "x" 65 45 60 embossed ribs raised: 0.25mm, width: 1.25mm 14.4* max. ?51.20.3 slot hole a recycle logo front view -0.0 +1.5* 8.4 front back front back ?178.01.0 7.9 - 10.9* slot hole b back view r5.2 r10.65


▲Up To Search▲   

 
Price & Availability of MGA-43128-BLKG

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X